پیشنهاد یک جداگر لرزه‌ای الاستومریک چندلایه اصطکاکی جدید

نوع مقاله: مقاله علمی-پژوهشی

نویسندگان

1 دانشیار، گروه مهندسی عمران، دانشکده مهندسی عمران، دانشگاه صنعتی نوشیروان بابل، بابل، ایران

2 کارشناسی ارشد مهندسی سازه، گروه مهندسی عمران، دانشکده مهندسی عمران، دانشگاه صنعتی نوشیروان بابل، بابل، ایران

چکیده

جداسازی لرزه‌ای یکی از بهترین روش‌های کنترل ارتعاشات لرزه‌ای در ساختمان‌ها ، پل‌ها و تأسیسات هسته‌ای است . در این روش ، تمرکز بر روی کاهش پاسخ لرزه‌ای و شتاب ورودی زلزله به سازه است . در این پژوهش ، یک جداگر لرزه‌ای ترکیبی الاستومریک چندلایه اصطکاکی جدید ، پیشنهاد و در نرم‌افزار اجزای محدود آباکوس مدل‌سازی ، تحلیل و بررسی و با مدل‌های تقریبا مشابه در مقالات دیگر ، مقایسه شده است. در این جداساز لرزه‌ای جدید از هسته‌های اصطکاکی به‌جای هسته‌های سربی استفاده‌شده و برخی از مشکلات جداسازهای قبلی ، به شکل تقریبا قابل قبولی مرتفع گردیده است.  بررسی‌های انجام‌شده نشان می‌دهد که جداگر پیشنهادی جدید در شرایط مختلف بارگذاری قائم و افقی ، دارای سختی اولیه مناسب و رفتار هسیترسیس کاملی است و تنش‌های داخلی در لایه‌های مختلف نیز در حد قابل‌قبول است. همچنین با افزایش ضرایب اصطکاکی هسته‌ها ، سختی اولیه و مساحت کلی نمودار اندکی افزایش می‌یابد ، هرچند این ضرایب اصطکاکی باید در محدوده مشخصی قرار گیرند.

کلیدواژه‌ها


1- Stanton, J. F., Roeder, C. W., Mackenzie-Helnwein, P., White, C., Kuester, C., and Craig, B., 2007, Rotation limits for elastomeric bearings. Washington D.C.: National Cooperative Highway Research Program (NCHRP), Transportation Research Board.
2- Aria, M., and Akbari, R., 2013, Inspection, condition evaluation and replacement of elastomeric bearings in road bridges, Structure and Infrastructure Engineering, Vol.9, No.9, pp.918–934.
3- Buckle, I. G., and Kelly, J. M., 1986, Properties of slender elastomeric isolation bearings during shake table studies of a large-scale model bridge deck. In: Joint sealing and bearing systems for concrete structures, American Concrete Institute, Vol.1, pp. 247–269.
4- Koh, C. G., and Kelly, J. M., 1986, Effects of axial load on elastomeric bearings, Earthquake Engineering Research Center, Rep. UCB/EERC-86/12, University of California, Berkeley.
5- Warn, G. P., and Ryan, K. L, 2012, A review of seismic isolation buildings: historical development and research needs, Buildings, Vol.2, No.3, pp.300-325.
6- Basu, B., Bursi, O. S., and Casciati, F., 2014, A European association for the control of structures joint perspective. Recent studies in civil structural control across Europe, Structural Control and Health Monitoring, Vol.21, No.12, pp.1414-1436.
7- Pan, P., Ye, L. P., and Shi, W., 2012, Engineering practice of seismic isolation and energy dissipation structures in China, Science China Technological Sciences, Vol.55, No.11,pp. 3036-3046.
8- Tyler, R. G., and Robinson, W. H., 1984, High-strain tests on lead rubber bearings for earthquake loadings, Bulletin of the New Zealand National Society Earthquake Engineering, Vol.17, No.2, pp.90-105.
9-Hwang, J. S., Chiou, J. M., and Sheng, L. H., 1996, A refined model for base-isolated bridge with bi-linear hysteretic bearings, Earthquake Spectra, Vol.12, No.2, pp.245-273.
10-Ryan, K. L., Kelly, J. M., and Chopra, A. K., 2004, Experimental observation of axial load effects in isolation bearings, 13th World Conference on Earthquake Engineering, Paper No.1707.
11- Nguyen, H. H., and Tassoulas, J. L., 2010, Directional effects of shear combined with compression on bridge elastomeric bearings, Journal of Bridge Engineering, Vol.15, No.1, pp.73-80.

12- Luca Landi ,G. G., 2016, Comparison of different models for friction pendulum isolators in structures subjected to horizontal and vertical ground motions, Soil Dynamics and Earthquake Engineering ,Vol.81, pp.201-215. 

13- Murat Eröz, 2013, The influence of design parameters on the response of bridges seismically isolated with the Friction Pendulum System (FPS), Engineering Structures, Vol.56, pp.585-599.

14- Murat Eröz, 2008, Bridge seismic response as a function of the Friction Pendulum System (FPS) modeling assumptions, Engineering Structures, Vol.30, pp.3204-3212.

15- Yi-feng, Hao, 2017, Explicit finite element analysis and experimental verification of a sliding lead rubber bearing, Journal of Zhejiang University-SCIENCE A, China, Vol.18, No.5, pp.363-376.
16- Xing, C. X., Wang, H., and Li, A. Q., 2012, Design and experimental verification of a new multi-functional bridge seismic isolation bearing, Journal of Zhejiang University- SCIENCE A (Applied Physics & Engineering), Vol.13, No.12, pp.904-914.
17- SAC (Standardization Administration of the People’s Republic of China), 2006, Rubber Bearings—Part II: Elastomeric Seismic-Protection Isolators for Bridges, GB 20688.2- Standardization Administration of the People’s Republic of China (in Chinese).
18- Constantinou, M. C., Kartoum, A., and Kelly, J. M., 1992, Analysis of compression of hollow circular elastomeric bearings, Engineering Structures, Vol.142, No.2, pp.103-111.