بررسی تأثیر ترکیب مهاربند کمانش تاب و قاب خمشی در ارتفاع بر فروریزش لرزه ای قاب های فولادی

نوع مقاله : مقاله علمی-پژوهشی

نویسندگان

1 استادیار دانشکده عمران دانشگاه ایوانکی، سمنان، ایران

2 استادیار، گروه مهندسی عمران، دانشگاه ایوانکی، سمنان، ایران

3 کارشناس ارشد، دانشکده مهندسی عمران، دانشگاه غیرانتفاعی ایوان‌کی، سمنان، ایران

4 گروه عمران، دانشکده مهندسی، واحد مشهد، دانشگاه آزاد اسلامی، مشهد، ایران

چکیده

در این تحقیق، ابتدا سازه­ی­ فولادی سه بعدی 12 طبقه با سیستم ترکیبی مهاربند کمانش تاب و قاب خمشی در شش حالت 1) همه­ی طبقات دارای سیستم مهاربند کمانش تاب، 2) شش طبقه اول مهاربند کمانش تاب و شش طبقه دوم قاب خمشی، 3) پنج طبقه اول مهاربند کمانش تاب و هفت طبقه دوم قاب خمشی، 4) هفت طبقه اول مهاربند کمانش تاب و پنج طبقه دوم قاب خمشی، 5) سه طبقه اول مهاربند کمانش تاب و نه طبقه دوم قاب خمشی، 6) نه طبقه اول مهاربند کمانش تاب و سه طبقه دوم قاب خمشی طراحی شدند. سپس با استفاده از نرم افزار Opensees، قاب محور کناری تحت تحلیل‌ استاتیکی غیرخطی بار افزون و تحلیل دینامیکی غیرخطی افزایشی (IDA) با پارامتر شدت IM متناظر با بیشینه­ی جابجایی نسبی بین طبقه‌ای و پارامتر پاسخ DM متناظر با شتاب طیفی مد اول  Sa (T1, 5%)قرار گرفته­اند و سطح عملکرد جلوگیری از فروپاشی CP بررسی گردیده است. در ادامه، منحنی­های شکنندگی و ضریب رفتار ارائه شده­اند. با بررسی نتایج مشاهده گردید که قاب دارای تعداد مهاربند بیشتر، در یک سطح شدت لرزه­ای ثابت دارای احتمال خرابی کمتری نسبت به سایر قاب­ها می­باشد. بنابراین، افزایش درصد استفاده از مهاربند منجر به ابجاد ضریب رفتار بیشتر و احتمال خرابی کمتر نسبت به سایر حالات می­گردد و با کاهش شکل­پذیری قاب­ها، احتمال خرابی آن­ها نیز کاهش می­یابد.

کلیدواژه‌ها


[1]-Yaghmaei-Sabegh, S., Mahdipour-Moghanni, R., 2020, Effects of Modeling Uncertainties on Fragility Curves of MRFs Considering Accumulation Damage. Iranian Journal of Science and Technology Transaction of Civil Engineering (accepted)
[2]- Shih, H. Ch., and Subhash, C. G., 2006, A Seismic Design Method for Steel Concentric Braced Frames for Enhanced Performance, InternationalJournal of 4th International Conference on Earthquake Engineering Taipei, No. 227.
[3]-Shankar, H. J. P., Lamsal, S., Shrestha, P., Ganesh, B., and Prabhakara, R., 2020, Performance Evaluation of Concentric and Eccentric Buckling Restrained Braces on the Dynamic Behaviour of RC Structures. In: Vinyas M., Loja A., Reddy K. (eds) Advances in Structures, Systems and Materials. Lecture Notes on Multidisciplinary Industrial Engineering. Springer, Singapore.
[4]- Hashemi, S., Pouraminian, M., and Sadeghi, A., 2021, Seismic Fragility Curve Development of Frames with BRB’s Equipped with Smart Materials subjected to Mainshock-Aftershock Ground Motion, Journal of Structural and Construction Engineering. (In Persian). (Accepted)
[5]- Saberi, V., Saberi, H., Babanegar, M., Sadeghi, A., and Moafi, A., 2021, Investigation the Effect of Cutting the Lateral Bearing System and Very Soft Story Irregularities on the Seismic Performance of Concentric Braced Frames. Journal of Structural and Construction Engineering. (In Persian). (Accepted)
[6]- Hashemi, S., Miri, M., Rashki, M., and Etedali, S., 2021, Investigation the Sidesway Collapse and Seismic Fragility Analysis of Frames with BRB Equipped with SMAs, Amirkabir Journal of Civil Engineering. (In Persian). (Accepted)
[7]-Saberi, V., Saberi, H., Hashemi, S., and Sadeghi, A., 2020, The Parametric Assessment of Geometric Shape and Steel Material of Connection Plate Effect on the Cyclic Performance of the Buckling Restrained Braces, New Approaches in Civil Engineering, 3(4), 48-69. (In Persian).
[8]- Shih, H. Ch. and Subhash, C. G., 2006, A Seismic Design Method for Steel Concentric Braced Frames for Enhanced Performance, InternationalJournal of 4th International Conference on Earthquake Engineering Taipei, No. 227.
[9]- Rai, D. C. and Goel, S. C., 2003, Seismic Evaluation and Upgrading of Chevron Braced Frames, Journal of Constructional Steel Research, 59, 971-994.
[10]- Dicleli, M., And Mehta, A., 2007, Effect of Near-Fault Ground Motion and Damper Characteristics on the Seismic Performance of Chevron Braced Steel Frames, Journal of Earthquake Engineering and Structural Dynamics, 36, 927-948.
[11]-Systani, A., Asgarian, B. and Jalaii far, A., 2008, Incremental Dynamic Analysis of Concentrically Braced Frames Subject to Near Field Ground Motions. Journal of Modares Civil Engineering, 16, 2, 135-145. (In Persian).
[12]- Farshchi, H. R., S. Moghadam, A. and Vetr, M. Gh., 2008, Experimental Study Of Connection Strength Effects in X-Type Braced Frames, Journal of Structure and Steel, 4, 3, 62-73.
[13]- Amini, M. and Alirezaei, M., 2013, Response Evaluation of Braced Frames with Suspended Zipper Struts and Chevron Braced Frames in Near-Fault Earthquake Ground Motions, American Journal of Sustainable Cities and Society, 2, 1, 151-164.
[14]- Abdollahzadeh, Gh.,  And Mohammadi, Sh., 2013, Behaviour Factor of Double Steel Frame with Concentric Braces of Large Scale. Journal of Modeling in Engineering, 10, 31, 1-13. (In Persian).
[15]- Mahin, S., Uriz, P. Aiken, I., Field, C., And Ko, E., 2004, Seismic Performance Of Buckling Restrained Braced Frame Systems, InternationalJournal of 13th World Conference on Earthquake Engineering Vancouver, 1-14.
[16]- Rahgozar, Navid. Rahgozar, Nima. And Moghadam, Abdolreza. (2016). Probabilistic Safety Assessment of Self-Centering Steel Braced Frame. International Journal of Frontier of Structural Civil Engineering, 1-20.
[17]- Gholhaki, M., and Ahmadi, S. M., 2016, the Effect of a Thin Steel Plate Filler in the Bracing Behavior of Eight. Journal of Modares Civil Engineering, 15, 2, 67-78.
[18]-Canxing, Q., Yichen, Z., Han, L., Bing, Q., Hetao, H., and Li, T., 2018, Seismic performance of Concentrically Braced Frames with non-buckling braces, Engineering Structures,  154, 93-102.
[19]- Nazarimofrad, E., and Shokrgozar, A., 2019, Seismic performance of steel braced frames with selfcentering bucklingrestrained brace utilizing superelastic shape memory alloys, Structure Design Tall Spectra Building. (Accepted)
[20]- Pachideh, Gh, Gholhaki, M., and Kafi, M., 2020,  Experimental and numerical evaluation of an innovative diamond-scheme bracing system equipped with a yielding damper, Steel and Composite Structures, 36, 2, 197–211.
[21]- Pachideh, Gh., Kafi, M., and Gholhaki, M., 2020, Evaluation of cyclic performance of a novel bracing system equipped with a circular energy dissipater, Structures, 28, 467-481.
[22]- Saberi, V., Saberi, H., Mazaheri, O., and Sadeghi, A., 2020, Numerical Investigation of Shape Memory Alloys and Side Plates Perforation Effect on Hysteresis Performance of Connections, Amirkabir Journal of Civil Engineering (2020). (In Persian). (Accepted).
[23]- Sadeghi, A., Hashemi, S. V., and Mehdizadeh, K., 2020, Probabilistic Assessment of Seismic Collapse Capacity of 3D Steel Moment-Resisting Frame Structures. Journal of Structural and Construction Engineering, (In Persian). (Accepted).
[24]- FEMA-356, commentary for the seismic rehabilitation of buildings, report FEMA-356, in, DC: SAC Joint Venture for the Federal Emergency Management Agency, Washington, (2000).
[25] -Applied Technology Council, 1996, Seismic Evaluation and Retrofit of Concrete Building, Report ATC-40. Redwood City.
[26]- Standard No.2800 BHRC, 2014, Iranian code of practice for seismic resistant design of buildings. Tehran: Building and Housing Research Centre, (In Persian).
[27]- Iranian National Building Code (INBC), 2013, Design and Construction of Steel Structures, Tehran: Ministry of Housing and Urban Development, Part 10. (In Persian).
[28]- INBC. Design Loads for Buildings. Tehran: Ministry of Housing and Urban Development, Iranian National Building Code, Part 6. (2013). (In Persian).
[29]- Habibullah, A., 2015, ETABS-Three Dimensional Analysis of Building Systems, Manual. Computers and Structures Inc. Berkeley, California. (2015).
[30]- Mazzoni, S., Mckenna, F., Scott, M. H. and Fenves, G. L., 2006, OpenSees Command Language Manual, http://OpenSEES. Berkeley.edu/OPENSEES/manuals/user manual/OpenSees Command Language Manual June 2006.pdf.
[31]- Kim, J., Park, J. and Lee, T., 2011, Sensitivity analysis of steel buildings subjected to column loss, Engineering Structures, 33, 2, 421-432.
[32]- Tremblay, R., Bolduc, P., Neville, R., and DeVall, R., 2006, Seismic testing and performance of buckling-restrained bracing systems, Canadian Journal of Civil Engineering, 33, 2, 183-198.
[33]- FEMA P 695, 2009, Quantification of Building Seismic Performance Factors, Washington, D.C. Federal Emergency Management Agency, USA. (2009).
[34]- Next Generation Attenuation of Ground Motion (Nga) Project. http://Peer. Berkeley. Edunga. (2006).
[35]- Sadeghi A., Kazemi, H., and Samadi, M., 2021, Reliability and Reliability-based Sensitivity Analyses of Steel Moment-Resisting Frame Structure subjected to Extreme Actions, Frattura ed Integrità Strutturale, 15, 57, 138–159.
[36]- Sadeghi, A., Kazemi H., Samadi, M., 2021, Probabilistic seismic analysis of steel moment-resisting frame structure including a damaged column, Structures, 33, 187-200.
[37]- Sadeghi, A., Kazemi, H., and Samadi, M., 2021, Single and multi-objective optimization of steel moment-resisting frame buildings under vehicle impact using evolutionary algorithms, Journal of Building Rehabilitation, 6, 21, 20-35.
[38]- Mehdizadeh, K., Karamodin, A., and Sadeghi, A., 2020, Progressive Sidesway Collapse Analysis of Steel Moment-Resisting Frames under Earthquake Excitations, Iranian Journal of Science and Technology Transaction of Civil Engineering, 44, 1209–1221.