تعیین تغییرات حوضه آبریز با استفاده از روش ترکیبی مدل مفهومی ـ هوش مصنوعی

نوع مقاله: مقاله علمی-پژوهشی

نویسندگان

1 دکتری آب و سازه های هیدرولیکی، گروه مهندسی آب، دانشکده فنی مهندسی عمران، دانشگاه تبریز، تبریز، ایران

2 استاد، گروه مهندسی آب، دانشکده فنی مهندسی عمران، دانشگاه تبریز، تبریز، ایران

3 استادیار، گروه مهندسی آب، دانشکده فنی مهندسی عمران، دانشگاه تبریز، تبریز، ایران

چکیده

در این تحقیق با استفاده از روش معکوس مکان و شدت تغییرات کاربری و پوشش گیاهی در حوضه  آبریز LRW که در کشور آمریکا قرار گرفته مورد بررسی قرار گرفت. برای این منظور، از قابلیتهای هوش مصنوعی و محاسبات نرم از جمله موجک و آنتروپی بهره گرفته شد؛ بطوریکه در ابتدای کار با استفاده از GIS زیرحوضه بندی و استخراج اطلاعات حوضه آبریز صورت گرفته، سپس با استفاده از دبی های خروجی مشاهداتی از زیرحوضه‌ها به واسنجی مدل بارش-رواناب حوضه آبریز در نرم افزار HEC-HMS پرداخته شد. با اعمال تغییرات در مقدار پارامتر ضریب مخزن واسنجی شده برای زیر حوضه‌ها در مدل مفهومی کلارک، روانابهای خروجی متفاوتی از هر زیر حوضه حاصل گشت تا بتوان ارتباط بین مقادیر پارامتر ضریب مخزن زیرحوضه‌ها با رواناب خروجی از حوضه را توسط مدلهای هوش مصنوعی شبکه عصبی و ماشین بردار پشتیبان برقرار کرد. برای جلوگیری از ورود اطلاعات نوفه به مدلها و حداقل رساندن ابعاد اطلاعات و ساده سازی مدل، قبل از مدل سازی پیش پردازش ورودیها توسط موجک-آنتروپی صورت گرفت. در نهایت مدل به دست آمده برای تعمیم به سالهای آتی با رویداشت دینامیکی پوشش گیاهی و کاربری حوضه آبریز و تخمین آن مورد استفاده قرار گرفت. برای نمونه در حوضه آبریز LRW افزایش وسعت مزارع و کاهش میزان جنگل با کاهش ضریب مخزن از سال 1990 تا 2013 هم بستگی بالایی نشان داد بطوریکه کاهش 26 درصدی ضریب مخزن در یکی از زیرحوضه‌های پایین دست با کاهش 53 درصدی مساحت جنگل و افزایش مساحت 21 درصدی مزارع همراه بود.

کلیدواژه‌ها

موضوعات


1- Agaton, M., Setiawanb, Y. and  Effendib, H., 2016, Land use/land cover change detection in an urban watershed: a case study of upper Citarum Watershed, West Java Province, Indonesia, Procedia Environmental Sciences, 33, 654-660.

2- Hu, H. B., Liu, H. Y., Hao, J. F. and An, J., 2012, Analysis of land use change characteristics based on remote sensing and GIS in the Jiuxiang river watershed, International Journal on Smart Sensing and Intelligent Systems, 5, 811-823.

3- Tran, L. T. and O’Neill, R. V., 2013, Detecting the effects of land use/land cover on mean annual streamflow in the Upper Mississippi River Basin, USA, Journal of Hydrology, 499, 82-90.

4- Zegre, N. P., Miller, A. J. Maxwell, A. and Lamont, S. J., Multiscale analysis of hydrology in a mountaintop mine-impacted watershed, Journal of the American Water Resources Association, 50, 1257-1272.

5- Butt, A. Shabbir, R., Ahmad, S. S. and Aziz, N., Land use change mapping and analysis using Remote Sensing and GIS: A case study of Simly watershed, Islamabad, Pakistan, The Egyptian Journal of Remote Sensing and Space Science, 18, 251-259.

6- Persendt, F. C. and Gomez, C., Assessment of drainage network extractions in a low-relief area of the Cuvelai Basin (Namibia) from multiple sources: LiDAR, topographic maps, and digital aerial orthophotographs, Geomorphology, 260, 32-50.

7- Welde, K. and Gebremariam, B., 2017, Effect of land use land cover dynamics on hydrological response of watershed: Case study of Tekeze Dam watershed, northern Ethiopia, International Soil and Water Conservation Research, 5, 1-16.

8- Diamantini, E., Lutz, S. R., Mallucci, S., Majone, B., Merz, R. and Bellin, A., 2018, Driver detection of water quality trends in three large European river basins, Science of the Total Environment, 612, 49-62.

9- Tarantola, A., 2005, Inverse problem theory and methods for model parameter estimation, SIAM, the U.S. (342 pp).

10- Bosch, D. D., Sullivan, D. G. and Sheridan, J. M., 2006, Hydrologic impacts of land-usechanges in coastal plain watersheds, Transactions of the American Society of Agricultural and Biological Engineers, 49, 423-432.

11- USACE, 2013. HEC-HMS User’s Manual. US Army Corps of Engineers, Hydrologic Engineering Center, Davis, California, 442 pp.

12- Straub, T. D., Melching, C. S. and Kocher, K. E., 2000, Equations for estimating Clark unit hydrograph parameters for small rural watersheds in Illinois, U.S. Geological Survey, Water Resources Investigations Report 00-4184, 36pp.

13- Nourani, V., Khanghah, T. R. and Baghanam, A. H., Application of entropy concept for input selection of Wavelet-ANN based rainfall-runoff modeling, Journal of Environmental Management, 26, 52-70.

14- Kim, T. and Valdes, J. B., 2003, Nonlinear model for drought forecasting based on a conjunction of wavelet transforms and neural networks, Journal of Hydrologic Engineering, 8, 319-328.

15- Vapnik, V. and Cortes, C., 1995, Support Vector Networks, Machine Learning, 20, 1-25.

16- Zhou, H., Gómez-Hernández, J. J. and Li, L., 2014, Inverse methods in hydrogeology: Evolution and recent trends, Advances in Water Resources, 63, 22-37.

17- Bronstert, A., 2005, Rainfall–runoff modeling for assessing impacts of climate and land use change, In: Anderson, M.G., McDonnell, J.J., (Eds.), Encyclopedia of Hydrological Sciences. John Willey & Sons Lds., Chichester, 2033-2059.

18- Dwarakish, G. S., Ganasri, B. P., 2015, Impact of land use change on hydrological systems: A review of current modeling approaches, Cogent Geoscience, 1, 1-18.

19- Si, W., Bao, W., Qu, S., Zhou, M., Shi, P. and Yang, X., 2017, Modelling the effect of land use change on hydrological model parameters via linearized calibration method in the upstream of Huaihe River Basin, China, Water SA, 43, 275-284.

20- Nourani, V., Andalib, G., Sadikoglu, F. and Sharghi, E., 2017, Cascade-based multi-scale AI approach for modeling rainfall-runoff process, Hydrology Research, 49, 1191-1207.