Investigation of Parameters Affects on the Phenomenon of Progressive Collapse in Steel Structures Using Artificial Neural Network (ANN)

Document Type : Research Paper


1 Assistant Professor, Department of Civil Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran

2 M.Sc. of Structural Engineering, Department of Civil Engineering, Safa Dasht Branch, Islamic Azad University, Tehran, Iran


According to the American Building Loading Code, progressive failure is defined as the spread of failure in a structure from one element to another, which ultimately leads to the failure of the entire structure or a large part of it. Lead to this type of failure are: car impact, gas explosion, aircraft collision, construction error, fire, accidental overloading of members, explosion, etc. Most of these accidents have a short impact time that in The result leads to dynamic responses. In this research, 100 types of models will be considered and the progressive collapse reference codes will be used for analysis and the application software will be used to achieve the answer under nonlinear static analysis by removing the column and performing nonlinear static analysis. The behavior of structural members against this phenomenon will be evaluated and finally the results will be controlled by the rules in the regulations and the final behavior of the structure against this phenomenon will be examined. Artificial neural networks have been used as a powerful tool in various fields of engineering and their use is increasing. Civil engineering and the study of the behavior of structures are no exception to this rule and neural methods have been used in it. In this study, three types of neural networks have been used to investigate the phenomenon of progressive collapse. Input and output parameters are selected and modeled with the help of evaluation indicators of this phenomenon. Finally, by comparing the performance of artificial neural networks, the most successful type of neural network has been proposed.


[1]- منهاج، م ب.، 1381، هوش محاسباتی جلد اول مبانی شبکه های عصبی، مرکز نشر دانشگاه امیر کبیر
[2]-جهانگیری، م.، زارع، ع. ر.، 1394، روش های حل مسائل بهینه سازی در تحلیل و طراحی سازه ها به وسیله شبکه های عصبی مصنوعی، دانشگاه یاسوج.
[3] - قلی زاده، س.، غیرتمند، چ.، 1389، کاربرد شبکه های عصبی در تقریب سازی تغییر مکان جانبی سازه ها با در نظر گرفتن اثرات اندرکنش خاک ـ سازه، کنفرانس بین المللی سبک سازی و زلزله، کرمان، جهاد دانشگاهی استان تهران.
[4]- غیرتمند،. م.، ف.، 1388، تاثیر سختی قاب خمشی بر رفتار پی، مجله فنی و مهندسی مدرس، 36، 158ـ147.
[5]- اسماعیل زاده، ا.، دشتی رحمت آبادی، م.، 1394، بررسی تاثیر تغییر فاصله برشگیرها در تغییر مکان جانبی دیوارهای مرکب با استفاده از شبکه های عصبی مصنوعی، دانشگاه آزاد اسلامی واحد یزد.
[6]- Adeli, H. and Park, H. S., 1995, A neural dynamics model for structural optimization theory, Computers & Structures, 57(3), 383-390.
[7]- Cha, Y. J., Choi, W. and Buyukozturk, O., 2017, Deep learning-based crack damage detection using convolutional neural network, Computer-Aided Civil and Infrastructure Engineering, 32(3). (To be published)
[8]- Deng, Z., and Zhang, Z., 2014, Event-related complexity “analysis and its application in the detection of facial attractiveness, International Journal of Neural Systems, 24(7), 1450026 (11 pages).
[9]- Garzon-Roca, J., Adam, J. M., Sandoval, C. and Roca, P., 2018, Estimation of the axial behaviour of masonry walls based on arti_cial neural networks, Computers & Structures, 125,  145-152
[10]- Emami, M., 2009, Application of artifitial neural networks in pressuremeter test results, Master of Science thesis, Tarbiat Modares University, Tehran, Iran.
[11]- Emami, M., and Yasrobi, S. S., 2014, Modeling and interpretation of pressuremeter test results with artificial neural networks, Geotechnical and Geological Engineering, 32(2), 375-389.
[12]-Fausett, L. V., 1994, Fundamentals neural networks: Architecture, algorithms, and applications, Prentice-Hall, Inc., Englewood Cliffs, New Jersey.
[13]- Emami M, Yasrebi S. S., 2014, Application of artificial neural networks in interpretation of pressuremeter test results, Modares Civil Engineering journal, 4(20), 11-25.
[14]- Hagan, M. T., Demuth, H. B., and Beale, M. H., 1996, Neural Network Design, Boston, MA: PWS Publishing.
[15]-Hagan, M. T. and Menhaj, M. B., 1994, Training feedforward networks with the marquartdt algorithm, IEEE transactions on neural networks, 5(6), 989-992.
[16]- Amezquita-Sanchez, J. P., Valtierra-Rodriguez, M., Aldwaik, M., Adeli, H., 2016, Training feedforward networks with the marquartdt algorithm, Sharif University of Technology,Scientia Iranica, Transactions A: Civil Engineering
[17]- Jenkins, W. M., 2012, Structural reanalysis using a neural network-based iterative method, Journal of Structural Engineering, 128(7), 946-950.
[18]- Kennedy, J. B., and Neville, A. D., 1964, Basic statistical methods for engineers and scientists, Happer International edition 1964
[19]- Marquardt, D., 2004, An algorithm for least squares stimation of nonlinear parameters, J. Soc. Ind. Appl. Math., 431-441.
[20]- Madan, M. G., Liang, J., and Noriyasu, H., 2000, Static and Dynamic Neural Network, A John Wiley & Sons, INC., Publication, Hobokon, New Jersey
[21]- Palomo, E. J. and Lopez-Rubio, E., 2016, Learning topologies with the growing neural forest, International Journal of Neural Systems, 26(3), 1650019 (21 pages).
[22]- Tashakori, A. R. and Adeli, H., 2002, Optimum design of cold-formed steel space structures using neural dynamic model, Journal of Constructional Steel Research, 58(12), 1545-1566.
[23]- Wang, Z., Guo, L. and Adjouadi, M., 2014, A generalized leaky integrate-and- re neuron model with fast implementation method, International Journal of Neural Systems, 24(5), 1440004 (15pages).
[24]- Yasrebi, S. S., Emami, M., 2008, Application of Artificial Neural Networks (ANNs) in prediction and interpretation of pressuremeter test results, InThe 12th International Conference of International Association for Computer Methods and Advances in Geomechanics (IACMAG) 2008 Oct 1 (pp. 1634-1638).
[25]-Zhen, L., and Zhang, Zh., 2017, Artificial Neural Network Based Method for Seismic Fragility Analysis of Steel Frames, KSCE Journal of Civil Engineering Korean Society of Civil Engineers, 4, 23-45.