The Necessity of Consideration of the Safe Distance for Infrastructures in the Vicinity of Weak Clay Soil Treatments Including Surcharge

Document Type : Original Article


1 PhD candidate, Department of civil engineering, Estahban Branch, Islamic Azad University, Estahban, Iran

2 Associate professor, Department of civil engineering, Estahban Branch, Islamic Azad University, Estahban, Iran

3 M.Sc., Department of civil engineering, Estahban Branch, Islamic Azad University, Estahban, Iran

4 B.Sc., Department of civil engineering, Estahban Branch, Islamic Azad University, Estahban, Iran


In this literature a case study that includes surcharge and prefabricated vertical drains (PVDs) was introduced and verified using finite element program Geostudio 2018R2. Based on the verified model, the lateral displacement and horizontal strains were calculated. It was shown that the safe zone for this special case study is 40 m that is approximately equal to the length of the constructed embankment. In urban areas as a result of the existence of water and wastewater pipes, optical fibers, oil and gas transition lines or trenches and excavations, these infrastructures are in serious danger due to the lateral displacements and horizontal strains. The same case is true for constructions in industrial areas. Since the mentioned infrastructures do have special importance in passive defense doctrine, exclusive attention should be considered by the owners, consultants and contractors in such projects all phases including preliminary investigation, during the construction and after the compilation of the treatment process in the case of permanent embankment. It was shown that due to the obstacles related to surcharge and PVDs treatment, this method is not suitable in urban areas.


Main Subjects

1- م. ت.، ر. م. و.، 1396، الزامات و ملاحظات پدافند غیرعامل در طرح های توسعه و عمران شهری (دستورالعمل مکانیابی مراکز حیاتی و حساس)، شهرسازی.
2- ا. آفتاب، ع. سلیمانی و م. فری، 2019، ارزیابی آسیب پذیری زیرساخت‌های شهری ارومیه با رویکرد پدافند غیرعامل، فصلنامه پدافند غیر عامل، 9، 4، 17-31.
3- م. میرزاابراهیم طهرانی و ن. پیشرو، 2021، شناسایی ریسک زیرساخت‌های حیاتی سیستم فاضلاب شهری با رویکرد پدافند غیرعامل، مجله آب و فاضلاب، 31، 7، 120-131.
4-س. زرقانی, ا. ع. خوارزمی وف.  ک. م. پ. غ. ع. و. ت. پ. بخشی شادمهری، 2016، جایگاه پدافند غیر عامل در امنیت زیرساخت های شهری با تاکید بر زیرساخت آب.
5- خ. علی ستاری و ک. علی اکبر افتخاری قوشه، 1392، نقش پدافند غیرعامل در ارتقای امنیت خطوط لوله انتقال گاز کشور، پدافند غیر عامل و امنیت،2،7-32.
6-ع. ا. ملک زاده, ر. پاشایی و م. منصور سمایی، 2019، حسگر توزیعی فیبر نوری حساس به فاز در اقدامات پدافند غیرعامل    ، فصلنامه پدافند غیرعامل، 9، 4، 93-103.
7-م. پاردسویی و س. زمردیان، 1391، مدل سازی عددی پروژه تحکیم خاک بستر واحد های زلال ساز بندر ماهشهر به وسیله سربار و زهکش های عمودی، دومین کنفرانس ملی سازه، زلزله، ژئوتکنیک.
8- Pardsouie, M. M., and M. H. Pardsouie, 2022, The effect of PVDs length on the lateral displacement of embankments, J. G. G., 18, 1, 655-658.
9- Pardsouie, M. M., Momeni, M., Nasehi, S. A., and Pardsouie, M. J., 2022, 2D Numerical Investigation of the Effectiveness of Surcharge and Vacuum Preloading Along with PVDs, 13th National Congress on Civil Engineering Isfahan University of Technology, Isfahan, Iran.
10- Atapattu, S., and Chao, K. C., 2022, Influence of vacuum preloading to nearby non-treated area for Bangkok soft clay.
11-Pardsouie, M. M., Pardsouie, M. H., Zomorodian, S. M. A., and Mokhberi, M., 2022,  Numerical Study of efficiency of the Vacuum Preloading in Weak Clay Treatment Application (a case study), Journal of Nea Approaches in Civil Enginering, 6, 2, 1-10.
12- Bergado, D., Long, P., and Balasubramaniam, A., 1996, Compressibility and flow parameters from PVD improved soft Bangkok clay,  J. G. E., 27, 1-20.
13- Elkady, T. Y., Al-Mahbashi, A. M. and Al-Refeai, T. O., 2015, Stress-dependent soil-water characteristic curves of lime-treated expansive clay, J. J. o. M. i. C. E., 27, 3, 04014127.
14- Tashiro, M., Nguyen, S. H., Inagaki, M., Yamada, S., and Noda, t., 2015, Simulation of large-scale deformation of ultra-soft peaty ground under test embankment loading and investigation of effective countermeasures against residual settlement and failure, J. Soils and Foundations, 55, 2, 343-358.
15- Nguyen, D. C., Vu, N. M., and Van Pham, E. S., 2020, Determination of the affected area of vacuum consolidation method for roadbed ground improvement to adjacent works, J. J. o. M., 61, 6, 33-39.
16-Liu, j., Fu, H., Wang, J., Cai, Y., and Hu, X., 2018, Estimation of influence scope of lateral displacement of soft ground under vacuum pressure with PVD, J. A. I. C. E.
17- Chai, j., and Rondonuwu, S. G., 2015, Surcharge loading rate for minimizing lateral displacement of PVD improved deposit with vacuum pressure, J. G. and Geomembranes, 43, 6, 558-566.
18- Chai, j., Lu, Y., Uchikoshi, T. J., 2018,, Behavior of an embankment on column–slab improved clay deposit, I. J. o. G. G. Engineering, 4, 4, 1-12.
19- Wu, J., et al., 2021, Combined vacuum and surcharge preloading method to improve lianyungang soft marine clay for embankment widening project: A case, J. J. I. J. o. P. E. , 49, 2, 452-465.
20- Jiang, X., Jiang, Y., Wu, C. Y., Wang, W. Q., and Geng, Y. G., 2020, Numerical analysis for widening embankments over soft soils treated by PVD and DJM columns, J. I. J. o. P. E., 21, 3, 267-279.
21-Stark, T. D., Ricciardi, P. J., and Sisk, R. D., 2018, Highway Embankment on Soft Soils Case Study and Lessons Learned, in IFCEE 2018 International Association of Foundation DrillingDeep Foundations InstituteAmerican Society of Civil EngineersPile Driving Contractors Association, 2018.