Modeling the Optimal Emergency Routing and Evacuation of the Urban Transport Network

Document Type : Research Paper


1 Assistant Professor, Department of Civil Engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran

2 M.Sc. of engineering and construction management, Department of Civil Engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran


Natural disasters often bring about wide-ranging catastrophic consequences. The post-crisis assessment of different regions generally indicates poor crisis management, evacuation routing, and planning performance, leading to incoordination and wasting time and network capacity. Therefore, this study presented an integrated solution to determine evacuation routes in a short time using an algorithm based on network analysis and the definition of safe nodes and arcs based on crisis conditions. The proposed flow optimization model employs the MCNFP method to find the shortest evacuation routes from each node to the safe zone and guide the maximum possible flow through this route. The model's efficiency was controlled using 12 small networks with different combinations of nodes and vehicles and 10 medium networks with different numbers of nodes and similar demands. Then, the running times of each MCNFP algorithm and the proposed model (P-M) were compared. The results showed that the evacuation time increased by increasing the number of nodes and the routing expanse and complexity. In addition, increasing the number of vehicles in limited and local networks increased the evacuation time. Generally, the research results confirmed the optimal speed of the proposed algorithm in network evacuation.


1- علمداری، ش.، 1398، روش‌های ارزیابی آسیب پذیری زیرساخت‌ها و مدیریت بحران، انتشارات بوستان حمید.
2- علمداری، ش.، 1397، مدیریت بحران، دیدگاه‌ها سامانه ملی تاب‌آوری تخلیه اضطراری، انتشارات بوستان حمید.
3- اسفندیاری، م.، نقش حمل و نقل در تخلیه اضطراری، انتشارات دانشگاه جامع امام حسین (ع).
4- Naseri, A., and Naseri, M., 2014, Strategies of Crisis Management in Urban Transportation, Research Journal of Applied Sciences, Engineering and Technology, 7(13).
5- جهانتیغ پاک، م.، 1395، ملاحظات پدافند غیرعامل در شریان‌های حیاتی شهری، انتشارات بوستان حمید.
6- Ma, X., Guo, H., Tang, X., Gao, X., and Wang, X., 2023, Emergency traffic distribution and related traffic organization method under natural disasters, Sustainable Operations and Computers, 4, 1-9, doi: 10.1016/j.susoc.2022.09.001
7- Ford, L. R., and Fulkerson, D. R., 1956, Maximum Flow Through a network, Canadian Journal of Mathematics 8 , 399–404.
8- Naseri, A., and Mousavi, M. R., 2012, The Model of Arranging Trip Demand to the Central Areas of the Cities by Creating Traffic Restricted Zone, International Journal of Modeling and Optimization, 2(2): 153-157.
9- Kotnyek, B., 2003, An Annotated Overview of Dynamic Network Flow, France: Institut National de Rechereche Informatique ET en Automatique.
10- Hoppe B. and Tardos. É., 1994, Polynomial Time Algorithms for some Evacuation Problems, In Proceedings of the 5th Annual ACM-SIAM Symposium on Discrete Algorithms.
11- Ahuja, R. K., Magnanti, Th. K., and Orlin. J. B., 1993, Network flows, Prentice Hall.
12- Naseri, A., and Naseri, M., 2014, A Model for Heterogeneous Fixed Fleet Vehicle Routing Problem, Int. Journal of Transport, Highways & Railway Engineering, 1(2): 9-13.
13- Johnson. E.L., 1966, Networks and basic solutions, Operations Research, 14:619–623, doi:10.1287/opre.14.4.619
14- Huang, M., Smilowitz, K. R. and Balcik, B., 2013, A Continuous Approximation Approach for Assessment Routing in Disaster Relief, Transportation Research Part B: Methodology. 50: 20–4, doi:10.1016/j.trb.2013.01.005
15- Hamacher, H.W., Heller, S. and Rupp, B., 2013, Flow Location Problems: Dynamic Network Flows and Location Models for Evacuation Planning, Annals of Operations Research, 207(1): 161-180.
16- Li, X., Cui. X., Jiang R. and Jia B., 2022, Bus evacuation during no-notice disasters in downtown areas: A case study of the Zhongguancun area, Beijing, Journal of Safety Science and Resilience, 3(3): 235-242, doi: 10.1016/j.jnlssr.2022.03.007
17- Deghdak, K., T’kindt, V., and Bouquard, J. L., 2016, Scheduling Evacuation Operations, Journal of Scheduling, 19:467-478.
18- Naseri, A., Vafaeipour, R., and Safashour, H., 2015, A Model to Reduce the Effects of Traffic Congestion Using Allocation Constraint in Emergencies, Journal of Traffic and Logistics Engineering, 3(1): 52-56.
19-علی‌محمدی.، ک، 1396، پدافند غیرعامل در شبکه‌های مواصلاتی جاده‌ای و آزادراه‌ها، انتشارات قرارگاه سازندگی خاتم‌الانبیاء (ص)، قرب کربلا.
20- P. Gehl, P., Auclair, S., Fayjaloun, R., and Meresse, P., 2022, Decision support for emergency road traffic management in post-earthquake conditions, International Journal of Disaster Risk Reduction, 77, 103098, doi: 10.1016/j.ijdrr.2022.103098
21- Reihani, S. H., Naseri, A., Vafaeipour, R., and Zehforoush, K., 2013, Modelling the impact of on-street parking on main parameters on vehicular traffic, Life Science Journal, 10(6): 829-834.
22-قصیری، ک.، 1386، مسأله مسیریابی وسایل نقلیه همراه با پنجره زمانی، انتشارات دانشگاه آزاد اسلامی قزوین.
23- Naseri, A., and Mokhtari, A., 2014, Optimal Route Selection Model Based on Multiple Criteria Approach, Journal of Traffic and Logistics Engineering, 2(1): 76-79, doi: 10.12720/jtle.2.1.76-79
24- Wang, D., Yang, K., and Yang, L., 2021, Risk-averse two-stage distributionally robust optimization for logistics planning in disaster relief management, International Journal of Production Research, 1-24, doi: 10.1080/00207543.2021.2013559
25- Zhang, Z., Liu, Y., Tong, Q., Guo, S., and Li, D., 2021, Evacuation based on spatio-temporal resilience with variable traffic demand, Journal of Management Science and Engineering, 6(1), 86-98, doi: 10.1016/j.jmse.2021.02.009
26- Ford, L. R. and Fulkerson, D. R., 1956, Maximum Flow through a Network, Canadian Journal of Mathematics, (8):399–404.
27- Dulebenets, M. A., Pasha, J., Abioye, O. F., Kavoosi, M., Ozguven, E. E., Moses, R., ... and Sando, T., 2019, Exact and heuristic solution algorithms for efficient emergency evacuation in areas with vulnerable populations, International journal of disaster risk reduction, 39, 101114, doi: 10.1016/j.ijdrr.2019.101114
28- Pyakurel, U., and Dhamala, T. N., 2016, Continuous time dynamic contraflow models and algorithms, Advances in Operations Research, doi: 10.1155/2016/7902460
29- Borowska-Stefańska, M., Kowalski, M., Wiśniewski, S., and Dulebenets, M. A., 2023, The Impact of Self-evacuation from Flood Hazard Areas on the Equilibrium of the Road Transport, Safety Science, 157, 105934, doi: 10.1016/j.ssci.2022.105934