Study of Conventional Concrete (CVC) Applying Effects on Lower Part of RCC Dam

Document Type : Research Paper


1 M.Sc. of Structural Engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran

2 Assistant Professor, Department of Civil Engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran

3 Ph.D. of Geotechnical Engineering, Department of Civil Engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran.


Nowadays, According to increasing development of RCC dams in the world, new offers are considered on the design and construction. Parts of these suggestions are including structural stresses, selection of construction methods and technical details of materials based on stresses. Stresses induced by earthquake are one of the major stresses in RCC dams in the seismic areas. In this research, Results of stress analyses and assessments of seismic safety of The Badavly RCC concrete dam with considering reservoir and dam are discussed. First, theoretical assumptions of dynamic analyses and loading methods are briefly presented. Second, highest levels of the spillway and dam selected and analyzed by ANSYS program. In continue dynamic answers evaluated.  It should be mentioned that, maximum tensile stress and minimum compressive stress values are comprised with allowable stress. Also, stresses separately up, under usual concrete and over RCC concrete are assessed. Dynamic analyses are performed on two MCE and DBE levels. Results of this study showed that compressive stress values are less than allowable stress. Also, tensile stresses are a little more than allowable stress in upper stream part of dam.


1-Chakrabarti, P., and Chopra, A. K., 1973, Hydrodynamic Pressures and Response of Gravity Dams to Vertical Earthquake Component, Earthquake Engineering and Structural Dynamics, 1, 325-335.
2- Fok, K. and Chopra, A. K., 1986, Earthquake Analysis of Arch Dams including Dam-Water- Interaction reservoir Boundary Absorption and Foundation Flexibility, Earthquake Engineering  and Structural Dynamics, 14, 155-184.
3- Nazari, A. and Riahi, S., 2011, The effects of SiO2 nanoparticles on physical and mechanical properties of high strength compacting concrete, Composites Part B: Engineering. 42(3), 570-578.
4- شکرچی زاده، م.، قاسمی، ه، 1390، بتن غلتکی در سد سازی، دانشگاه تهران.
5- Fares, Y. A., 2008, Roller-Compactedconcrete Dams: Design and Construction Trends, Hydro Review. HCI Publications.
6- Karlsson, T. and Tallberg, j., 2011, Concrete Face Rockfill dam compared to Roller Compacted oncrete Dam, Master of Science Thesis in the master's Programme Geo and Water Engineering.
7- باقری، ع.،1378،بررسیتأثیراستفادهازمیکروسیلیسرویخواصمکانیکیبتنغلتکی،طرح پژوهشی. دانشگاه خواجه نصیرالدین طوسی.
8--اکبر نژاد، ص. حسنی، ا.، 1385، مطالعۀ رفتار مکانیکی بتن غلتکی با مصالح ریزدانۀ غیر خمیری برای کاربرد در روسازیهای بتنی، پایان نامه دوره کارشناسی ارشد، دانشگاه تربیت مدرس.
9- باقری، ع. محمودیان، م. و فخری، م.، 1385، تأثیر عملآوری بر خواص بتنهای غلتکی روسازی راه، با و بدون دوده سیلیس، پژوهشنامه حمل و نقل، سال سوم، شماره سوم، ص 20-35.
10-مونسان، ع.، 1386، بررسی تأثیر دانسیته و نسبتهای اختلاط بر دوام رویههای بتن غلتکی در دوره های یخبندان، پایان نامه دوره کارشناسی ارشد، دانشگاه امیرکبیر.
11- Senff, L., Labrincha, J. A., Ferreira, V. M., Hotza, D. and Repette, W. L., 2009, Effect of nano-silica on rheology and fresh properties of cement pastes and mortars, Construction and Building Materials. 23(7), 2487-2491.
12- Shih, J. Y., Chang, T. P. and Hsiao, T. C., 2006, Effect of Nanosilica on characterization of Portland cement composite, Materials Science and Engineering. 424(1-2), 266-274.
13- Ji, T., 2005, Preliminary Study on the water Permeability and microstructure of concrete incorporating nano–SiO2, cement and concrete Research. 35(10), 1943-1947.
14- Li, H., Zhang, M. H. and Ou, J. P., 2006, Abrasion resistance of concrete containing nano-particles for pavement, Wear, 260(11-12), 1262-1266.
15- Nirmala, j. and Dhanalakshmi, G., 2015, Influence of nano materials in the distressed retaining structure for crack filling, Construction and Building Materials. 88(30 July 2015), 225-231.
16- محمدی، ی.، سیف الهی، ف.، 1394، بررسی تاثیر نانو سیلیس بر خواص مکانیکی(مقاومت فشاری و نفوذپذیری) بتن غلتکی در سدها، نشریه علمی-پژوهشی سد ونیروگاه برق آبی، سال دوم، شماره هفتم، زمستان 1394، ص 13-24.
17- Calayir, Y. and Karaton, M., 2005, Seismic Fracture Analysis of Concrete Gravity Dams Including Dam-Reservoir Interaction, Journal of Computers and Structures, 83, 1595-1606.
18- Chuhan, Z. and Guanglun, W., Shaomin, W. and Yuexing, D., 2002, Experimental Tests of Rolled Compacted Concrete and Nonlinear Fracture Analysis of Rolled Compacted Concrete Dams, Journal of Materials in Civil Engineering, 14(2), 108-115.
19- Zuohui, P., 2004, Material Model of High Roller Compacted Concrete Dam, Journal of Dam Engineering, 12, 143-166.
20- غروی، م.، نورزاد، ع.، 1389، تحلیل لرزه ای خطی و غیر خطی سد بتن غلتکی جگین، مجله مهندسی عمران، دانشگاه آزاد اسلامی، سال سوم، شماره 4، پاییز 1389، ص 10-17.
21- مهندسین مشاور لار، 1386، گزارش تحلیل دینامیکی بدنه سد بداولی.